A Generic Worst-case Bound on the Condition Number of a Homotopy Path

نویسنده

  • GREGORIO MALAJOVICH
چکیده

The number of steps of homotopy algorithms for solving systems of polynomials is usually bounded by the condition number of the homotopy path. A generic bound on the condition number of homotopy path between systems with integer coefficients will be given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Untangling Planar Curves

Any generic closed curve in the plane can be transformed into a simple closed curve by a finite sequence of local transformations called homotopy moves. We prove that simplifying a planar closed curve with n self-crossings requires Θ(n3/2) homotopy moves in the worst case. Our algorithm improves the best previous upper bound O(n2), which is already implicit in the classical work of Steinitz; th...

متن کامل

2 Untangling Planar Curves

6 Any generic closed curve in the plane can be transformed into a simple closed curve by a finite 7 sequence of local transformations called homotopy moves. We prove that simplifying a planar 8 closed curve with n self-crossings requires Θ(n3/2) homotopy moves in the worst case. Our 9 algorithm improves the best previous upper bound O(n2), which is already implicit in the classical 10 work of S...

متن کامل

Worst Possible Condition Number of Polynomial Systems

A worst case bound for the condition number of a generic system of polynomial equations with integer coefficients is given. For fixed degree and number of equations, the condition number is (non-uniformly, generically) pseudo-polynomial in the input size.

متن کامل

Electrical Reduction, Homotopy Moves, and Defect

4 We prove the first nontrivial worst-case lower bounds for two closely related problems. 5 First, Ω(n3/2) degree-1 reductions, series-parallel reductions, and ∆Y transformations are 6 required in the worst case to reduce an n-vertex plane graph to a single vertex or edge. 7 The lower bound is achieved by any planar graph with treewidth Θ( p n). Second, Ω(n3/2) 8 homotopy moves are required in ...

متن کامل

A New Algorithm and Worst Case

We study algorithms for approximation of Feynman-Kac path integrals in the worst case setting. The algorithms use a nite number of samples of the initial condition and potential functions. We present a new algorithm and an explicit bound on its cost to compute an "-approximation to the Feynman-Kac path integral. We also establish bounds on the worst case complexity of Feynman-Kac path integrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001